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Conventions

Throughout this series of talks:

▶ θ < κ is a pair of infinite regular cardinals;

▶ Eκ
θ stands for {α < κ | cf(α) = θ};

▶ S denotes a stationary subset of κ.
Typically, S consists of limits ordinals;

▶ For D ⊆ κ, acc(D) := {δ ∈ D | sup(D ∩ δ) = δ > 0},
and nacc(D) := D \ acc(D).

Some variations: Eκ
<θ,E

κ
≤θ,E

κ
̸=θ,E

κ
>θ,E

κ
≥θ and

acc+(X ) := {δ < sup(X ) | sup(X ∩ δ) = δ > 0}.
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Motivation

Our starting point is Jensen’s diamond principle:

Definition (Jensen, 1972)

♢(S) asserts the existence of a sequence A⃗ = ⟨Aδ | δ ∈ S⟩ s.t.:
1. for every δ ∈ S , Aδ is a subset of δ;

2. for every subset A ⊆ κ, the set {δ ∈ S | Aδ = A ∩ δ} is
stationary in κ.
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1. for every δ ∈ S , Aδ is a subset of δ;

2. for every subset A ⊆ κ, the set {δ ∈ S | Aδ = A ∩ δ} is
stationary in κ.

♢ has numerous applications, e.g., ♢(ω1) =⇒ ∃ a Souslin tree.
However, ♢(S) =⇒ κ<κ = κ (in fact, [κ]<κ ⊆ {Aδ | δ ∈ S}) and
hence ♢(ω1) fails in Cohen’s model.
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A weakening of diamond

Definition (Jensen, 1972)

♢(S) asserts the existence of a sequence A⃗ = ⟨Aδ | δ ∈ S⟩ s.t.:
1. for every δ ∈ S , Aδ is a subset of δ;

2. for every subset A ⊆ κ, the set {δ ∈ S | Aδ = A ∩ δ} is
stationary in κ.

Definition (Shelah, 1990’s)

CG(S) asserts the existence of a sequence C⃗ = ⟨Cδ | δ ∈ S⟩ s.t.:
1. for every δ ∈ S , Cδ is a club in δ;

2. for every club D ⊆ κ, the set {δ ∈ S | Cδ ⊆ D ∩ δ} is
stationary in κ.

5 / 23



A weakening of diamond

Definition (Jensen, 1972)

♢(S) asserts the existence of a sequence A⃗ = ⟨Aδ | δ ∈ S⟩ s.t.:
1. for every δ ∈ S , Aδ is a subset of δ;

2. for every subset A ⊆ κ, the set {δ ∈ S | Aδ = A ∩ δ} is
stationary in κ.

Definition (Shelah, 1990’s)
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1. for every δ ∈ S , Cδ is a club in δ;

2. for every club D ⊆ κ, the set {δ ∈ S | Cδ ⊆ D ∩ δ} is
stationary in κ.

As before, CG(S) =⇒ CG(S ′) whenever S ⊆ S ′ ⊆ κ.
Note it is harmless to replace Cδ by some cofinal (not necessarily
closed) subset of it.
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A weakening of diamond

Definition (Jensen, 1972)

♢(S) asserts the existence of a sequence A⃗ = ⟨Aδ | δ ∈ S⟩ s.t.:
1. for every δ ∈ S , Aδ is a subset of δ;

2. for every subset A ⊆ κ, the set {δ ∈ S | Aδ = A ∩ δ} is
stationary in κ.

Definition (Shelah, 1990’s)

CG(S) asserts the existence of a sequence C⃗ = ⟨Cδ | δ ∈ S⟩ s.t.:
1. for every δ ∈ S , Cδ is a club in δ;

2. for every club D ⊆ κ, the set {δ ∈ S | Cδ ⊆ D ∩ δ} is
stationary in κ.

Unlike ♢, instances of CG are provable in ZFC. It is also harder to
destroy them, as witnesses to CG(S) are preserved by κ-cc forcing.
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Why should you care about club-guessing

At the 3rd installment of the Young Set Theory Workshop (Raach,
February 2010), I met a fellow brilliant student from Budapest,
Dani Soukup. He told me about Gruenhage’s problem related to
van Douwen’s D-spaces, asking whether scattered aD-spaces are D.
Dani outlined a consistent construction of a counterexample, using
MAD families and diamond. I told him of two club guessing
theorems of Shelah, suggesting to try to replace ♢ by CG.

By July, he had the ZFC proof. . . :
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The first theorem

Theorem (Shelah)

If ℵ1 < θ+ < κ, then CG(Eκ
θ ) holds.

Proof. Let C⃗ be any θ-bounded C -sequence over Eκ
θ , i.e.,

C⃗ = ⟨Cδ | δ ∈ Eκ
θ ⟩ with each Cδ a club in δ of order-type θ.

If we are lucky and C⃗ witnesses CG(Eκ
θ ), then our work is done .

Otherwise, pick a club D ⊆ κ such that {δ ∈ Eκ
θ | Cδ ⊆ D} is

nonstationary in κ. For every δ ∈ Eκ
θ ∩ acc(D), both Cδ and D ∩ δ

are clubs in δ, so it is easy to come up with a corrected sequence
C⃗ ′ := ⟨Cδ ∩ D | δ ∈ Eκ

θ ∩ acc(D)⟩.
If we are lucky and C⃗ ′ witnesses CG(Eκ

θ ∩ acc(D)), then. . . .
Otherwise, pick a club D ′ ⊆ κ such that
{δ ∈ Eκ

θ ∩ acc(D) | Cδ ∩ D ⊆ D ′} is nonstationary in κ, and let

C⃗ ′′ := ⟨Cδ ∩ D ∩ D ′ | δ ∈ Eκ
θ ∩ acc(D ∩ D ′)⟩.

If we are lucky and C⃗ ′′ witnesses CG(Eκ
θ ∩ . . .), then. . . .

Otherwise
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The first theorem (cont.)

Claim
There exists a club D ⊆ κ such that ⟨Cδ ∩ D | δ ∈ Eκ

θ ∩ acc(D)⟩
witnesses CG(Eκ

θ ∩ acc(D)).

Proof. Suppose not. Construct by recursion a sequence of clubs
⟨Di | i < θ+⟩ such that:

1. D0 := κ.

2. For each i < κ, Di+1 ⊆ Di and
{δ ∈ Eκ

θ ∩ acc(Di ) | Cδ ∩ Di ⊆ Di+1} is disjoint from Di+1;

3. For each i ∈ acc(θ+), Di =
⋂

j<i Dj .

As θ+ < κ, D∗ :=
⋂

i<θ+ Di is a club in κ. Pick δ ∈ Eκ
θ ∩ acc(D∗).

Note that ⟨Cδ ∩Di | i < θ+⟩ is a descending chain of subsets of Cδ.
As otp(Cδ) = θ, for a large enough i < θ+, Cδ ∩ Di = Cδ ∩ Di+1.
However, δ ∈ Eκ

θ ∩ acc(D∗) ⊆ Eκ
θ ∩ acc(Di ) ∩ Di+1.

This is a contradiction to Clause (2).
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A closer look

Let K(κ) denote the collection of all subsets x ⊆ κ such that
otp(x) ∈ acc(κ) and such that x is closed below its sup. Note:
every member of a C -sequence ⟨Cδ | δ ∈ S⟩ belongs to K(κ).

Given a club D ⊆ κ, define a map ΦD : K(κ) → K(κ) via:

ΦD(x) :=

{
x ∩ D, if sup(x ∩ D) = sup(x);

x \ sup(x ∩ D), otherwise.

The above argument shows

If S is a stationary subset of Eκ
>ω, and C⃗ = ⟨Cδ | δ ∈ S⟩ is a

C -sequence such that supδ∈S |Cδ|+ < κ, then there exists a club
D ⊆ κ such that ⟨ΦD(Cδ) | δ ∈ S⟩ witnesses CG(S).
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Postprocessing functions

ΦD(x) :=

{
x ∩ D, if sup(x ∩ D) = sup(x);

x \ sup(x ∩ D), otherwise.

Definition ([29])

Φ : K(κ) → K(κ) is a postprocessing function if for all x ∈ K(κ):

1. Φ(x) is a club in sup(x);

2. acc(Φ(x)) ⊆ acc(x);

3. Φ(x) ∩ ᾱ = Φ(x ∩ ᾱ) for every ᾱ ∈ acc(Φ(x)).

It is conservative if Φ(x) ⊆ x for all x .

Note: The second requirement implies that otp(Φ(x)) ≤ otp(x).

11 / 23



Postprocessing functions homework

Suppose that ⟨Cδ | δ ∈ S⟩ is a C -sequence such that, for every
club D ⊆ κ, the set {δ ∈ S | Cδ ⊆∗ D ∩ δ} is stationary.
Must CG(S) hold?

Given ε < κ, define a postprocessing Φε : K(κ) → K(κ) via:

Φε(x) :=

{
x \ ε, if sup(x) > ε;

x , otherwise.

Exercise: Prove that there exists some ε < κ such that
⟨Φε(Cδ) | δ ∈ S⟩ witnesses CG(S).
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Back to where we were

If S is a stationary subset of Eκ
>ω, and C⃗ = ⟨Cδ | δ ∈ S⟩ is a

C -sequence such that supδ∈S |Cδ|+ < κ, then there exists a club
D ⊆ κ such that ⟨ΦD(Cδ) | δ ∈ S⟩ witnesses CG(S).

Thus, CG(S) holds provided that S ⊆ Eκ
>ω ∩ Eκ

≤θ and θ+ < κ.
In particular, ZFC ⊢

∧
κ≥ℵ3

CG(κ).

Baumgartner devised a proper forcing for shooting a club through
ℵ1, and this shows that PFA =⇒ ¬CG(ℵ1).

▶ What about CG(Eℵ2
ℵ0
)?

▶ What about CG(Eℵ2
ℵ1
)?

▶ What about CG(Reg(κ)) for some Mahlo cardinal κ?
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Taking care of Eℵ2

ℵ0

For every δ ∈ Eℵ2
ℵ0
, fix a surjection ψδ : ω1 → δ.

Claim
There exists i < ω1 such that, for every club D ⊆ ℵ2,
{δ ∈ Eℵ2

ℵ0
| sup(ψδ[i ] ∩ D) = δ} is stationary in ℵ2.

Proof. Suppose not. It follows that for every i < ω1,
we may fix a sparse enough club Di ⊆ ℵ2 such that

{δ ∈ Eℵ2
ℵ0

| sup(ψδ[i ] ∩ Di ) = δ} ∩ Di = ∅.

Consider the club D∗ :=
⋂

i<ω1
Di and pick δ ∈ Eℵ2

ℵ0
∩ acc(D∗).

Let d be some cofinal subset of D∗ ∩ δ of order-type ω.
Then there exists a large enough i < ω1 such that ψδ[i ] ⊇ d .
As Di ⊇ D∗ ⊇ d , we infer that sup(ψδ[i ] ∩ Di ) = sup(d) = δ,
contradicting the fact that δ ∈ D∗ ⊆ Di .
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Taking care of Eℵ2

ℵ0
(cont.)

Reformulating the result of the previous slide:
There is a sequence of countable sets ⟨aδ | δ ∈ Eℵ2

ℵ0
⟩ such that for

every club D ⊆ ℵ2, {δ ∈ Eℵ2
ℵ0

| sup(aδ ∩D) = δ} is stationary in ℵ2.

So, now we are in conditions to run the familiar argument, i.e., find
a club D ⊆ ℵ2 such that ⟨ΦD(aδ) | δ ∈ S⟩ witnesses CG(S).

Corollary (Shelah)

CG(κ) holds for every regular κ ≥ ℵ2.

Let us record a feature that the above proof approach secures and
is not present in the other proof approach.
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Relative club guessing

Theorem (folklore)

For every uncountable cardinal λ, for every stationary S ⊆ Eλ+

<λ, for
every stationary T ⊆ λ+, there exists a C -sequence ⟨Cδ | δ ∈ S⟩
s.t. for every club D ⊆ λ+, the following set is stationary in λ+:

{δ ∈ S | Cδ ⊆ D & nacc(Cδ) ⊆ T}.
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Application: Ulam-type matrices
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Ulam vs. Solovay
By a celebrated 1971 theorem of Solovay, every stationary subset S
of every regular uncountable cardinal κ may be decomposed into κ
many stationary sets, ⟨Si | i < κ⟩.
We would like to point out that for a successor cardinal κ = λ+,
Solovay’s theorem follows from the existence of an Ulam matrix.

Theorem (Ulam, 1930)

There exists a matrix ⟨Uη,τ | η < λ, τ < λ+⟩ such that:

1. For every η < λ, ⟨Uη,τ | τ < λ+⟩ consists of pairwise disjoint
subsets of λ+;

2. For every τ < λ+,
⋃

η<λ Uη,τ is co-bounded in λ+.

The proof of Ulam’s theorem is very simple. Fix a coloring
c : λ× λ+ → λ+ such that, for every β ∈ [λ, λ+), the fiber map
c(·, β) : λ→ β is a bijection. Then let:

Uη,τ := {β < λ+ | c(η, β) = τ}.
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Ulam vs. Solovay (cont.)

Lemma
Suppose J is a κ-complete ideal over κ = λ+, extending [κ]<κ.
Then, for every B ∈ J+, there exists some η < λ such that the
following set has size κ:

Tη(B) := {τ < κ | B ∩ Uη,τ ∈ J+}.

Proof. Suppose not. Then, for every η < λ, |Tη(B)| ≤ λ, and
hence |

⋃
η<λ Tη(B)| ≤ λ. Pick τ ∈ λ+ \

⋃
η<λ Tη(B).

As
⋃

η<λ Uη,τ is co-bounded, it is in the dual of J, so that

B ∩
⋃

η<λ Uη,τ is in J+. Since J is κ-complete, there must exist

some η < λ such that B ∩ Uη,τ ∈ J+. So, τ ∈
⋃

η<λ Tη(B),
contradicting the choice of τ .
Is it possible to do better than that? I.e., getting Tη(B) = κ?
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Sierpiński vs. Ulam

Theorem (Sierpiński, 1934)

If 2λ = λ+ = κ, then there is a coloring c : λ×λ+ → λ+ such that
the induced matrix ⟨Uη,τ | η < λ, τ < λ+⟩ satisfies that for every
κ-complete ideal J over κ, extending [κ]<κ, for every B ∈ J+,
there exists some η < λ such that the following set is equal to κ:

Tη(B) := {τ < κ | B ∩ Uη,τ ∈ J+}.
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A proof of Sierpiński’s theorem
Proof. Fix an enumeration ⟨fα | α < λ+⟩ of all functions from λ
to λ+. For every β < λ+, let c(·, β) : λ→ λ+ be such that, for
every α < β, for some η = ηα,β < λ, c(η, β) = fα(η).
Towards a contradiction, suppose J is a κ-complete ideal extending
[κ]<κ and B ∈ J+ is such that, for every η < λ, Tη(B) ̸= κ.
So, we may define a function f : λ→ λ+ via:

f (η) := min(κ \ Tη(β)).

Find α < λ+ such that f = fα. For every β ∈ (α, κ), there exists
ηα,β < λ such that c(ηα,β, β) = fα(ηα,β). As J is κ-complete,
there is η < λ such that B ′ := {β ∈ B \ (α+ 1) | ηα,β = η} in J+.
Denote τ := f (η). Then, for every β ∈ B ′,

c(η, β) = fα(η) = f (η) = τ,

meaning that B ′ ⊆ B ∩ Uη,τ . As B
′ ∈ J+, it follows that

τ ∈ Tη(β), contradicting the fact that f (η) = τ .
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Recap

Both Ulam’s and Sierpiński’s matrices provide us with λ many
λ+-partitions of λ+, but with Sierpiński we moreover know how the
final decomposition of a positive set would look like. In contrast,
after using Ulam’s, we still have to do some further thinning out.
This makes a difference, for instance, if we want the partition to lie
in some inner model.

The Sierpiński-type improvement of the Solovay-Ulam theorems
boils down to the following problem:
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Both Ulam’s and Sierpiński’s matrices provide us with λ many
λ+-partitions of λ+, but with Sierpiński we moreover know how the
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final decomposition of a positive set would look like. In contrast,
after using Ulam’s, we still have to do some further thinning out.
This makes a difference, for instance, if we want the partition to lie
in some inner model.

The Sierpiński-type improvement of the Solovay-Ulam theorems
boils down to the following problem:

Find the θ’s for which there is a coloring c : λ× λ+ → θ such that,
for every B ∈ [λ+]λ

+
, for some η < λ, c[{η} × B] = θ.
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A Sierpiński theorem in ZFC

Theorem ([53])

Suppose that λ is a singular cardinal. For every cardinal θ < λ,
there is a coloring c : λ× λ+ → θ such that, for every B ∈ [λ+]λ

+
,

for some η < λ, c[{η} × B] = θ.

We shall present the proof in the next talk.

In [53], it is also proved that the case θ = λ may consistently fail.
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