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Conventions

Throughout this series of talks:
> 0 < k is a pair of infinite regular cardinals;
» Ej stands for {o < k| cf(a) = 0},
» S denotes a stationary subset of k.
Typically, S consists of limits ordinals;

» For D C k, acc(D) :={d € D |sup(DNd) =46 >0},

and nacc(D) := D\ acc(D).

H H . K K K K K
Some variations: EZ,, EZy, E;ég, EZ,, EX, and

acc™(X) := {6 < sup(X) | sup(X Nd) =46 > 0}.
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Motivation

Our starting point is Jensen's diamond principle:

Definition (Jensen, 1972)
&(S) asserts the existence of a sequence A = (As | € S) s.t.:
1. for every § € S, As is a subset of §;

2. for every subset A C k, theset {§ € S|As=ANd}is
stationary in k.
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1. for every § € S, As is a subset of §;
2. for every subset A C k, theset {§ € S|As=ANd}is

stationary in k.

Note that {(S) = <(S’) whenever S C S’ C k.
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Motivation

Our starting point is Jensen's diamond principle:

Definition (Jensen, 1972)

&(S) asserts the existence of a sequence A = (As | € S) s.t.:
1. for every § € S, As is a subset of d;
2. for every subset A C k, theset {§ € S|As=ANd}is

stationary in k.

¢ has numerous applications, e.g., $(w1) = 3 a Souslin tree.
However, $(S) = k<" = & (in fact, [s]~" C {As | 6 € S}) and
hence {(w1) fails in Cohen’s model.
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A weakening of diamond

Definition (Jensen, 1972)
&(S) asserts the existence of a sequence A = (As | § € S) s.t.:
1. for every § € S, As is a subset of d;

2. for every subset AC k, theset {6 € S| As=ANd}is
stationary in k.

Definition (Shelah, 1990's)
CG(S) asserts the existence of a sequence C = (C5 | § € S) s.t.:
1. forevery 6 € S, Gs is a club in 6;

2. for every club D C k, theset {§ € S| G C DNd}is
stationary in k.
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A weakening of diamond

Definition (Jensen, 1972)
&(S) asserts the existence of a sequence A = (As | § € S) s.t.:
1. for every § € S, As is a subset of d;

2. for every subset AC k, theset {6 € S| As=ANd}is
stationary in k.

Definition (Shelah, 1990's)
CG(S) asserts the existence of a sequence C = (C5 | § € S) s.t.:
1. forevery 6 € S, G5 is a club in §;

2. for every club D C k, theset {§ € S| G C DNd}is
stationary in k.

As before, CG(S) = CG(S’) whenever S C S’ C k.
Note it is harmless to replace Cs by some cofinal (not necessarily
closed) subset of it.
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A weakening of diamond

Definition (Jensen, 1972)
&(S) asserts the existence of a sequence A = (As | § € S) s.t.:
1. for every § € S, As is a subset of d;

2. for every subset AC k, theset {6 € S| As=ANd}is
stationary in k.

Definition (Shelah, 1990's)
CG(S) asserts the existence of a sequence C = (C5 | § € S) s.t.:
1. forevery 6 € S, G5 is a club in §;
2. for every club D C k, theset {§ € S| G C DNd}is
stationary in x.

Unlike <>, instances of CG are provable in ZFC. It is also harder to
destroy them, as witnesses to CG(S) are preserved by k-cc forcing.
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Why should you care about club-guessing

At the 3™ installment of the Young Set Theory Workshop (Raach,
February 2010), | met a fellow brilliant student from Budapest,
Dani Soukup. He told me about Gruenhage's problem related to
van Douwen's D-spaces, asking whether scattered aD-spaces are D.
Dani outlined a consistent construction of a counterexample, using
MAD families and diamond. | told him of two club guessing
theorems of Shelah, suggesting to try to replace > by CG.

By July, he had the ZFC proof. . .:

Constructing aD, non-D-spaces

Daniel Tamas Soukup

Edtvos Lordnd University, Hungary

ARTICLE INFO ABSTRACT
Article history: We introduce a general method to construct O-dimensional, scattered T, spaces which
Received 29 July 2010 ) are not linearly D. The construction is used to show that there are aD, non-D-spaces,
Received in revised form 16 April 2011 answering a question of Arhangel'skii. The latter example is achieved using Shelah’s club
Accepted 24 April 2011 ing principles
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The first theorem

Theorem (Shelah)
If Ry < 0F < K, then CG(EJ) holds.

Proof. Let C be any 6-bounded C-sequence over E, i.e.,

—

C = (Gs | 6 € Ef) with each G5 a club in 6 of order-type 6.

If we are lucky and C witnesses CG(Ef), then our work is done <.
Otherwise, pick a club D C & such that {6 € Ej | G C D} is
nonstationary in x. For every § € Ef Nacc(D), both G5 and D N6
are clubs in §, so it is easy to come up with a corrected sequence
C':=(CsnND|d e Ef Nacce(D)).

If we are lucky and C’ witnesses CG(Ey Macc(D)), then... & <.
Otherwise, pick a club D’ C & such that

{0 € Ef Nacc(D) | Gs N D C D'} is nonstationary in x, and let
C":=(CsNDND'|§eEfnacc(DN D).

If we are lucky and C” witnesses CG(EyN...), then... &' &<,

Otherwise 00000

7/23



The first theorem (cont.)

Claim
There exists a club D C k such that (CsN D | 6 € Ef Nacc(D))
witnesses CG(Ef N acc(D)).
Proof. Suppose not. Construct by recursion a sequence of clubs
(D; | i < 61) such that:

1. Dy := k.

2. Foreach i < k, Diy1 C D;j and

{6 € Ef Nacc(D;) | G5 N D; C Djtq} is disjoint from Djq;

3. For each i € acc(6), D; = (;; Dj.
As 0% < k, D* :=();.p+ Di is a club in k. Pick § € Ef Nacc(D*).
Note that (CsN D; | i < 67) is a descending chain of subsets of Cs.
As otp(Cs) = 0, for a large enough i < 0%, Cs N D; = Cs N Diy1.
However, § € Ef Nacc(D*) C Ef Nacc(D;) N Djyq.
This is a contradiction to Clause (2). O

8/23



Tihe meral is guite ele-eshioneel:

fif you werk her ane continUe o &ry
enelghktimesieaijicctinekeind
recormrecdng yourselif you will
evenwally succead

Saharon Shelah *




A closer look

Let K(x) denote the collection of all subsets x C x such that
otp(x) € acc(x) and such that x is closed below its sup. Note:
every member of a C-sequence (Cs | § € S) belongs to (k).

Given a club D C &, define a map ®p : K(k) = K(k) via:

p(x) xN D, if sup(x N D) = sup(x);
x) =
b x \ sup(x N D), otherwise.

The above argument shows

If S is a stationary subset of EZ ,, and C=(C|éeS)isa
C-sequence such that supscs |Cs|T < k, then there exists a club
D C k such that (p(Cs) | 6 € S) witnesses CG(S).
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Postprocessing functions

p(x) xN D, if sup(x N D) = sup(x);
x) =
v x \ sup(x N D), otherwise.

Definition ([29])

¢ : K(k) — K(k) is a postprocessing function if for all x € K(k):
1. ®(x) is a club in sup(x);
2. acc(P(x)) C ace(x);
3. d(x)Na = Pd(xNa) for every & € acc(P(x)).

It is conservative if ®(x) C x for all x.

Note: The second requirement implies that otp(®(x)) < otp(x).
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Postprocessing functions homework

Suppose that (G5 | 6 € S) is a C-sequence such that, for every
club D C K, theset {§ € S| G C* DN} is stationary.
Must CG(S) hold?

Given € < k, define a postprocessing ®° : (k) — K(k) via:

X, otherwise.

0 (x) = {x\s, if sup(x) > ¢;

Exercise: Prove that there exists some € < & such that
(®°(Gs) | 6 € S) witnesses CG(S).
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Back to where we were

If S is a stationary subset of EX ,, and C=(Cs|6ecS)isa
C-sequence such that supscs |Cs|T < k, then there exists a club
D C k such that (®p(Cs) | 6 € S) witnesses CG(S).

Thus, CG(S) holds provided that S C E5, N E%, and 67 < k.
In particular, ZFC = A -y, CG(k). B

Baumgartner devised a proper forcing for shooting a club through
N1, and this shows that PFA — = CG(X;).

> What about CG(Ey?)?

> What about CG(Ey?)?
» What about CG(Reg(k)) for some Mahlo cardinal x?
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Taking care of E;f;

For every 6 € E;f; fix a surjection 5 : w1 — 0.

Claim

There exists i < w1 such that, for every club D C X,
{6 € B2 | sup(¢hs[i] N D) = 6} is stationary in R,.
Proof. Suppose not. It follows that for every i < wy,
we may fix a sparse enough club D; C R, such that

{6 € B2 | sup(yps[i] N D7) = 6} N D; = 0.

Consider the club D* := ", Di and pick § € E§02 Nacc(D*).
Let d be some cofinal subset of D* N § of order-type w.

Then there exists a large enough i < wy such that ¥5[i] 2 d.
As D; O D* D d, we infer that sup(¢;[i] N D;) = sup(d) = 9,
contradicting the fact that 6 € D* C D;.

OJ
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Taking care of E;f; (cont.)

Reformulating the result of the previous slide:
There is a sequence of countable sets (as | § € E§02> such that for

every club D C Ny, {§ € Effoz | sup(as N D) = &} is stationary in W,.

So, now we are in conditions to run the familiar argument, i.e., find
a club D C X, such that (®p(as) | 6 € S) witnesses CG(S).

Corollary (Shelah)
CG(k) holds for every regular k > N,.

Let us record a feature that the above proof approach secures and
is not present in the other proof approach.
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Relative club guessing

Theorem (folklore)

For every uncountable cardinal X\, for every stationary S C E, ;\f\ for
every stationary T C AT, there exists a C-sequence (Cs | § € S)
s.t. for every club D C \*, the following set is stationary in AT :

{6€S|C CD & nacc(Gs) C T}.
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Application: Ulam-type matrices
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Ulam vs. Solovay

By a celebrated 1971 theorem of Solovay, every stationary subset S
of every regular uncountable cardinal k may be decomposed into «
many stationary sets, (S; | i < k).

We would like to point out that for a successor cardinal K = AT,
Solovay’s theorem follows from the existence of an Ulam matrix.

Theorem (Ulam, 1930)
There exists a matrix (Uy - | n < A\, 7 < AT) such that:

1. Foreveryn < X, (U, ;| T < AT) consists of pairwise disjoint
subsets of \*;

2. Forevery T < \T, Un<>\ Uy~ is co-bounded in AT .

The proof of Ulam’s theorem is very simple. Fix a coloring
c: A X AT — AT such that, for every 8 € [\, A1), the fiber map
c(-,B) : A — B is a bijection. Then let:

Upr i={B <A™ | c(n.8) =T}
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Ulam vs. Solovay (cont.)

Lemma

Suppose J is a k-complete ideal over k = A\, extending [k]<".
Then, for every B € JT, there exists some 1) < X such that the
following set has size k:

T,(B):={r<k|BnU,; € J"}.

Proof. Suppose not. Then, for every n < A, |T,,(B)| < A, and
hence | U, -\ Ty(B)| < A. PICkTE)\+\Un<)\ 2(B).

As U, < UnT is co-bounded, it is in the dual of J, so that

BN Un</\ Uy, is in J*. Since J is k-complete, there must exist
some 7 < A such that BN Uy - € J*. So, 7 € U, ., Ty(B),
contradicting the choice of 7. O
Is it possible to do better than that? l.e., getting T,,(B) = k?
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Sierpinski vs. Ulam

Theorem (Sierpinski, 1934)

If2* = At = k, then there is a coloring ¢ : A x AT — A1 such that
the induced matrix (U, ; | n < X\, 7 < X\T) satisfies that for every
k-complete ideal J over k, extending [k]<", for every B € J¥,
there exists some n < A such that the following set is equal to k:

T,(B):={r<k|BnU,, €J"}.
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A proof of Sierpinski's theorem
Proof. Fix an enumeration (f, | « < A™) of all functions from A
to AT. For every B3 < AT, let c(+,8) : A = AT be such that, for

every a < 3, for some n =1, < A, c(n, B) = fu(n).

Towards a contradiction, suppose J is a k-complete ideal extending
[k]<% and B € J* is such that, for every n < X\, T,(B) # k.

So, we may define a function f : A — AT via:

f(n) == min(k \ T,(5)).

Find a < A" such that f = f,. For every 3 € («, k), there exists
Na,8 < A such that c(na,3, 8) = fa(1a,3). As J is k-complete,
there is ) < A such that B := {8 € B\ (a+ 1) | a3 =n} in JT.
Denote 7 := f(n). Then, for every 5 € B,

c(n, B) = fa(n) = f(n) =7,

meaning that B’ C BN U, ;. As B’ € J*, it follows that
7 € T,(B), contradicting the fact that f(n) = 7. O
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Recap

Both Ulam’s and Sierpinski's matrices provide us with A many
AT-partitions of AT, but with Sierpiriski we moreover know how the
final decomposition of a positive set would look like. In contrast,
after using Ulam’s, we still have to do some further thinning out.
This makes a difference, for instance, if we want the partition to lie
in some inner model.

The Sierpinski-type improvement of the Solovay-Ulam theorems
boils down to the following problem:
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Recap

Both Ulam’s and Sierpinski's matrices provide us with A many
AT-partitions of AT, but with Sierpiriski we moreover know how the
final decomposition of a positive set would look like. In contrast,
after using Ulam’s, we still have to do some further thinning out.
This makes a difference, for instance, if we want the partition to lie
in some inner model.

The Sierpinski-type improvement of the Solovay-Ulam theorems
boils down to the following problem:

Find the 6's for which there is a coloring ¢ : A x AT — @ such that,
for every B € [A\T]*", for some i < A, c[{n} x B] = 6.
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A Sierpinski theorem in ZFC

Theorem ([53])

Suppose that X\ is a singular cardinal. For every cardinal 0 < A,
there is a coloring ¢ : A x AT — 0 such that, for every B € [\T],
for some n < A, c[{n} x B] = 0.

We shall present the proof in the next talk.

In [53], it is also proved that the case # = A may consistently fail.
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